
CALCULATION OF DIFFUSION COEFFICIENTS FOR DENSE GASES 

L. I. Kurlapov UDC 533.15 

Calculated values of mutual gas diffusion coefficients are compared to values meas- 
ured by the laser interferometry method. 

The study of diffusion of dense gases is complicated by the effects of change in volume 
upon mixing. In closed type experimental apparatus these effects lead to development of addi- 
tional convective flows, so that it is difficult to establish what reference frame is suitable 
for the diffusion tube [i, 2]. These effects are decreased in experiments involving diffu- 
sion of a minor impurity with use of laser interferometry [3, 4], which latter provides in- 
formation on the concentration fields in the diffusion cuvette from the time of admission of 
the impurity to complete equalization of the mixture inhomogeneity. To eliminate methodologi- 
cal errors the diffusion coefficient is found by processing interferograms which reflect only 
that stage of the transient process which to the required accuracy can be described by the con- 
ventional diffusion equation given zero mean numerical velocity [5]. 

Data obtained by this method show that the concentration and pressure dependences are in- 
terrelated and that a power dependence of the mutual diffusion coefficient upon pressure is 
applicable only for coefficients referring to one and the same concentration value. The pres- 
ent study will offer results which indicate that expressions for the diffusion coefficients 
obtained by solution of the Boltzmann--Lorentz--Enskog equation [7] properly reflect the inter- 
relation of pressure and concentration dependences, 

The molecular flux of the component e in an inhomogeneous s-component mixture has the 
form [6, 7]: 

r ~ - - W n ~ - - n ~ D ~ v l n x ~ - - n ~ D ~ v l n p + n ~ D ~ v l n z + n ~ O ~ v l n  T, (1 )  

in which the reversible component of the flux is characterized by a convection velocity W and 
the irreversible by diffusion and thermodiffusion coefficients D~, D~ and the gradients of the 
corresponding macroparameters. 

For solid spherical molecules the effective diameters of which are temperature-dependent, 
the diffusion coefficients D e can be calculated conveniently with the following expression [6- 
8]: 
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where 
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c i~  (T~) ~ (T~) (T~/T~)" 2 -. = , ( r ~  (r2) ---- f f ~  (TI) (T1/T2) 2 

a = 2.663-10 -23 J3/2.K-a/=.kmol-I/a. 

If the relationship between the observed fluxes in a two-component mixture is such that 
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Fig. i. Concentration dependence of mutual diffusion coefficient in heli~rgon 
system at various pressures: i) p = 2.46 MPa; 2) 3,99; 3) 7.96; T = 290 K. Points, 
experiment [4]; lines, calculation with Eqs. (2), (5), (i -- 6 = 4.5; 2 -- 3.8, 3 -- 
2.3; ~** = 1.795o10 -1~ m; ~2u = 3.304"10 -1~ m). D12, m=/sec. 

Fig. 2. Properties of helium-carbon dioxide mixture at T = 295 K, p = 5.09 MPa 
(He--C02): i) Dx2; 2) D~2; 3) z; 4) G; 5) s Points, experimental values of mu- 
tual diffusion coefficient [4]. Lines, calculations with Eqs. (2), (5), (6) for 
oi, = 1.792.10 -*0 m; 6a= = 4.126,10 -*0 m; 6 = 3.5, D12, D12, m2/sec, 

then the diffusion is described by the mutual diffusion coefficient D~21 

(3) 

r l  2 = _ ] ,~DI~VX 1 - -  xlxgrtDle (c~pV In p -- ~zr V In T), (4) 

where 

ff)1~ = GD12; G =  1 - - - -  
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It can be assumed with sufficient accuracy that the laser interferometry method permits 
measurement of D,a [4] , calculation of which requires knowledge of the state of the mixture 
for all concentration values. Such information can be obtained from kinetic theory within 
the framework of the cluster model of dense gases [7, 9]. In the approximationwhich consid- 
ers the existence of dimers only (r = 2), this model leads to the following expressions for 
equilibrium properties: 

p = znleT, z = Zo + AV/V + VoW, (6) 

• 2 '~  [I + 9og (1 • g~)], Vo 2 c~3 gO = A..a X~ - -  ~ n  xr ~ ,  

~=1 g= l  V 3 ~=1 

r 
AV = + ~ x,~[tj ,~(1--g=)--y~ 
V ~-" ~=1 g = l  
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Fig. 3. Excess volume in hydrogerr-argon system at T = 170,5 K 
as a function of molar fraction of hydrogen. Experimental data 
[i0]: i) p = 7.5 MPa; 2) 5.0 MPa; 3) 2.5 MPa; 4) 0.5 MPa. Lines, 
calculation with Eq. (6) for Lennard-Jones potential for various 
values of parameter ~: i) ~ = 1.2; 2) 1.2; 3) 1.3; 4) 3.0; AV, 
cmS/mole, 

where AV/V is the relative excess mixing volume; Vo/V is the relative intrinsic molecular vol- 
ume. 

Results of calculations by these expressions are presented in Figs. 1-3. Comparison of 
theory with experiment [4] reveals that the theory properly reflects the experimentally ob- 
served change in diffusion coefficient ratio upon increase in pressure [4], Experiment and 
theory (Fig. i) indicate decrease in D12 with increase in concentration of the light compon- 
ent xl at low pressures (curves 1 and 2) with increase occurring at higher pressures (curve 3). 

It is evident from Fig. 2 that at pressures above 2 MPa for a helium-carbon dioxide the 
thermodynamic factor G becomes significant. At low pressures theory describes experiment bet- 
ter v~th high values of the parameter ~, which indicates how many times larger is the path 
traversed by particles in the dimer than the collision parameter [7, 9]. With increase in 
pressure the value of ~ in this model decreases. 

The data presented in Fig. 3 indicate that Eq. (6) properly describes the concentration 
dependence of absolute excess mixing volume AV [i0], which allows its use in calculating 
transport properties of mixtures. 

For more accurate consideration of the fractions of clusters of various powers it is ne- 
cessary to solve the system of Boltzmann equations written for each cluster gas [9]. 

NOTATION 

W, convection velocity; n~, partial numerical density of component ~; p. pressure; T, 
temperature; z, mixture compressibility factor; D , diffusion coefficient; D T, thermodiffusion 
coefficient; Y~B, partial Enskog correction; ~, mass of kmol; ~, effective dlameter of solid 
spheres; md, exponent in temperature dependence of self-diffusion coefficient; mv, exponent 
in temperature dependence of viscosity coefficient; y~ , fraction of g-dimensional clusters 
containing molecules of component ~ in mixture; y~$, f~action of clusters in pure gas; x~, 
numerical fraction; ~, ratio of particle path in dlmer to collision diameter; G~ thermodynamic 
factor. 

LITERATURE CITED 

i. M. A. Leontovich, Zh. Eksp. Teor. Fiz., 49, No. 5, 1624-1630 (1965). 
2. R. Haase, Thermodynamics of Irreversible Processes [Russian translation], Moscow (1967). 
3. Inventor's Certificate No. 798559, "Optical diffusion cuvette," G 01N21/03. 
4. L. I. Kurlapov and B. G. ~Umanov, "Nonsteady state diffusion of some gases at elevated 

pressure," Dep. Kaz. NIINTI 19.07.83. No. 484. 
5. J. Hirschfelder, C. Curtiss, and R. Bird, Molecular Theory of Gases and Liquids [Russian 

translation], Moscow (1961). 
6. L.I.Kurlapov, Zh. Tekh. Fiz., 56, No. 2, 386-388 (1986). 
7. L. I. Kurlapov, "Irreversible gas transport," dep. Kaz. NIINTI 30.08.85, No. 1035. 
8. L. I. Kurlapov, Zh. Tekh. Fiz., 48, No. 4, 864-871 (1978). 

303 



9. L. I. Kurlapov, Dissociating Gases as Heat Transport Agents and Energy Converter Working 
Fluids, Part 2 [in Russian], Minsk (1982), pp. 3-9. 

i0. P. Zandbergen and J. J. M. Beenakker, Physica, 33, No. 2, 343-365 (1967). 

VOLUME-VISCOUS PROPERTIES OF MERCURY CONTAINING A GASEOUS PHASE 

O. Yu. Dinariev, I. A. Leont'ev, 
A. B. Mosolov, and B. A. Savrasov 

UDC 532.135 

The theological model of a liquid with heredity is used to analyze experimental re- 
suits on normal stress relaxation in mercury. A low end estimate of viscosity at 
low frequencies is obtained. 

A model of a viscous compressible liquid with heredity, generalizing the linear-viscous 
Navier--Stokes model, was proposed in [I]. This model has been employed to describe a liquid 
with large volume relaxation time. In the present study the theory of [i] will be used to 
describe behavior of liquid mercury containing fine air bubbles. For rapid volume deforma- 
tions of the mixture, system equilibrium is disrupted as regards the processes of solution and 
heat exchange between the components, which manifests itself macroscopically by the appearance 
of relaxation processes in the liquid, i.e., heredity. 

The fundamental relationships of [i] will be presented below in slightly changed nota- 
tion. 

We assume that the stress tensor in a liquid particle in a fixed Cartesian coordinate 
system at the time to can be represented in the form 

/ i  (to) = - -  p (~o, To) 8 ~i + ~J (to), ( 1 )  

where po = p(to), To = T(to) are the density and temperature in the particle at the time to; 
p = p(p, T) is the pressure; the viscous stress tensor TI3 depends on Po and the values of 
the temperature T and the deformation rate tensor eij = I/2(vi, j + vj, i) in the particle at 
all times preceding to: 

T ~i (,to) = T ~f [Po, r (t < to), ehz (t < to)l. (2) 

It will be assumed that.if at t < to T = T(t) = To and ekZ = 0, then T IJ (to) = 0. We intro- 
1 

duce the notation ~ = e., S.. =--e.. -- (i/3)~ .. Let the liquid be isotropic, while func- 
a. x 1 i3 

tional (2) is a linear integr~l operator of 8 = dT/dt and eij. Then because of isotropicity, 
to specify Eq. (2) three kernels K i = Ki(Po , To, t), i = i, 2, 3 are sufficient: 

to to to 
l" - ~ i ( t o ) = 8  *i ~KI(DO, To, to--t) e(t)dt + 2 f K2(po, To, t 0 - - t )  s ~i(t) dt +8iJ j K3(po, To, to--t) O(t)dt. (3)  

- - o o  - - o o  - -oo  

It should be noted that Eq. (3) is of limited applicability. In the general case of non- 
linear viscoelasticity in place of the tensor e.. in Eqs. (2), (3), we must use the tensor 

. m i" 
r (where e~= ms the finite deformation tensor ~3, 4]). Moreover in the expression for T J 
t~ms nonlinear in e=~ may appear. It can be shown that the general case leads to Eq. (3) for 
small deformations o~~ media with sufficiently short relaxation times. 

Integration over time in Eq. (3) is performed for a fixed liquid particle. The kernels 
K i = Ki(0 , T, t), i = i, 2, 3 are in fact defined for t ~ O, however it is convenient to pre- 
define them, taking Ki(0 , T, t) = 0 at t < 0. We may then take the upper integration limit 
in Eq. (3) equal to infinity. For brevity, we will omit the dependence of K. on p and T be- 
low. l 

Following [2], we require that for cyclical processes, where p + p~, T § T,, eij + 0 as 
at t § •176 
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